5-5 Videos Guide

5-5a

- Average value of a function f over an interval $[a, b]$

$$
\text { - } f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Exercise:

- Find the average value of the function on the given interval.

$$
g(t)=\frac{t}{\sqrt{3+t^{2}}},[1,3]
$$

Theorem (statement):

- The Mean Value Theorem for Integrals: If f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that

$$
f(c)=f_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

that is, $\int_{a}^{b} f(x) d x=f(c)(b-a)$

5-5b

Exercises:

- (a) Find the average value of f on the given interval.
(b) Find c in the given interval such that $f_{\text {avg }}=f(c)$.
(c) Sketch the graph of f and a rectangle whose base is the given interval and whose area is the same as the area under the graph of f. $f(x)=\sqrt[3]{x}, \quad[0,8]$
- Find the numbers b such that the average value of $f(x)=2+6 x-3 x^{2}$ on the interval $[0, b]$ is equal to 3 .

